Candidate's Name:	
School name:	
BIO P530/1	OF BIOLOGO
BIOLOGY	TO THE STATE OF TH
PAPER 1	CAI
SET II 2019	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

ASSOCIATION OF BIOLOGY EDUCATORS (ABE)

A.B.E

Uganda Advanced Certificate of Education

Resourceful External Mock Examinations, 2019

BIOLOGY (THEORY)

PAPER 1

2 HOURS 30 MINUTES

INSTRUCTIONS TO CANDIDATES

This paper consists of sections A and B. Answer all questions in both sections.

SECTION A:

2 ½ hours

Answers to this section must be written in boxes provided.

SECTION B.

Answers to this section should be written in the spaces provided and not anywhere else.

For Examiner'	s use only
Section	Marks
A: 1-40	E
B: 41	
42	
43	
44	
45	
46	
Total	

SECTION A (40 marks)

Write the letter corresponding to the right answer in the box provided. Each question in this section carries **one** mark.

1.	Amino acids are described as amphoteric compounds because of having both A. R and hydrogen atoms B. amino and carboxyl groups C. amino group and hydrogen atoms D. carboxyl groups and R groups.
2.	In which of these organelles are proteins modified to suit different functions? A. Smooth endoplasmic reticulum and Golgi apparatus B. Mitochondria and chloroplasts C. Rough endoplasmic reticulum and Golgi apparatus D. Chloroplasts and rough endoplasmic reticulum
3.	Which of these constitute irreversible enzyme inhibitors? A. Competitive inhibitors B. Noncompetitive inhibitors C. Allosteric inhibitors D. Heavy metals
4.	The hydrogen used in the light independent reaction of photosynthesis to manufacture triose phosphate is obtained from A. NAD+ B. NADPH C. NADH D. NADP+
5.	The side of the DNA molecule that stores the information that is transcribed into mRNA is called the A. sense strand B. coding strand C. loading strand D. template strand
6.	In the genetic code the highest number of codons coding for the same amino acid is A. 3 B. 6 D. 2
7.	Movement of materials into cells that involves a carrier system but without any energy expenditure is A. pinocytosis

		phagocytosis ion pumps facilitated diffusion		
8.	A. B. C.	th of the following states would a plant not recover Incipient plasmolysis Full plasmolysis Flaccidity Wilting	even if water is provided?	
9.	A.	of the following figures represents the highest wat -240 -200	er potential? C. 0 D. 1	
10.	A.	of the following forms of transport requires oxyger Exocytosis Osmosis	C. Pinocytosis D. Phagocytosis	
11.	A. B. C.	ration of water is a major cooling mechanism becanigh specific heat capacity high surface tension latent heat of vaporization low viscosity	use of water having the property of	
12.	A.	of the following ions are essential in the transmiss Na+ K+	ion of nerve impulses? C. Cl- D. Fe2+	
13.	A.	saccharide formed when two β galactose units co maltose lactose	ndense is C. sucrose D. cellobiose	
14.	Ä.	r product of photosynthesis containing a carbon s glycerol glyceraldehyde	keleton of the type C-C-C is C. glycerate D. glycogen	
15.	A. B. C.	of these substances is not a steroid? Adrenaline Aldosterone Cortisol Oestrogen		

16. The	e following are e A. isoleucine	essential amino a	cids except	C.	lysine		
	B. leucine				glycine		
	med between a A. Histidine	cture of a protein s djacent amino aci	•	C.	I that stabilize the struc	cture are	
18 Th	B. Glycine table 1 shows	the size of DNA	molecules of s	D. several org			
10. 111	Group	Organism	Base pairs In 1000s	length	anionio		
	Viruses	Polyoma	5.1	1.7µ			
	10	Lambda phage	48.6	17µ			
	Bacteria	Mycoplasma	760	260µ	11:11		
	Eukaryotes	Yeast	135000	5.6cm			
	A. The number B. The number C. Longer DN	one can conclude er of base pairs is er of base pairs is IA length contains rganisms with the	not related to proportional t fewer base p	to the lengt airs.	-		
19. Du	ring DNA replic	cation the enzyme	that unwinds	and splits	the 2 stranded molecu	ule is	
	A. DNA polyn B. DNA ligas				Helicase RNA polymerase		
20. The	e type of growth	n pattern that occu	irs in monoco	tyledonous	leaves is		
	A. limited B. unlimited				allometric intermittent		
21. In a	The offspring v AaBb 108, aal	n two parents of the vere as follows bb 97, Aabb 33 ar r value between the	nd aaBb 42		b,ab		
	A. 75%	B. 4	•		85%	D. 26.8%	

22.	Which gene	of these disorders result from a gene mutation occ	curr	ing on an autosomal dominant	
	Α.	Cystic fibrosis			
	B.	Huntington's disease			
	C.	Mongolism			
	D.	Turner's syndrome			
23.		of the following mutagens can inhibit spindle form	atio	n during cell division?	
		Nitrous acid			
	В.	Colchicines			
		Gamma rays			
	D.	Ultraviolet rays			
24.		aintenance of the allele for sickle cell anemia in hu	ıma	n populations in malaria endemic	
	•	s in Africa is an example of)	11.71	
		genetic drift			
		gene flow founder effect			
	U.	heterozygous advantage			
25	Exposi	ure of dormant seeds to cold temperature to induc	e 06	ermination is the process of	
20.		aestivation	o g	initiation is the process of	
	B.	stratification			
		vernalisation	/	1 101	
		hibernation	11	121	
		0,1		1-01	
26.		imple of a high energy ionizing mutagen is		161	
		bromo Uracil	C.	X rays	
	B.	nitrous acid	D.	ultraviolet rays	
27.	In rum	inants bacterial action takes place in the			
		rumen	C.	omasum	
	B.	reticulum	D.	abomasum	
28	Which	of the following controls he amount of enzymes in	nar	ocreatic juice?	
_0.		Cholecystokinin	-	Pancreozymin	
		Secretin		Gastrin	
	_				
29.		g on dead and decaying organisms represent a ty	-		
		holistic		saprophytic	
	B.	parasitic	D	autotrophic	

 30. Pepsin differs from trypsin in that it digests protein in A. alkaline medium in the stomach B. acidic medium in the duodenum C. acid medium in the stomach D. alkaline medium in the duodenum 	
31. Which of the following would happen if bile duct is block A. Faces would become dry B. Acid chyme would be neutralized C. Little digestion occurs in the intestines D. Little digestion of fat occurs	red?
 32. Which of the following is not a function of the liver? A. Production of bile B. Production of insulin C. Glycogen storage D. Detoxification 	
33. Patients recovering from carbon monoxide poisoning ar oxygen is administered in order to A. stimulate breathing B. inhibit breathing C. stop breathing D. vary the breathing rate	e first given carbon dioxide before
34. The equation for the respiration of a substrate is 2C ₅₁ H ₉₈ O ₆ + 145 O ₂ (g) → 102CO ₂ (g)+98H ₂ O reaction is A. 0.70 B. 0.80	C. 0.90 D. 1.0
35. The onset of depolarization of an axon occurs when the A. more negative B. less negative	e axoplasm temporarily becomes C. more positive D. less positive
36. Gaseous exchange in earthworms occurs at the body so A. moist B. elongated	urface because the body is C. segmented D. flattened
37. Which one of the following is the role of the capillary needs.A. Makes the alveoli more permeable.B. Increases the surface area of the alveoli.	twork around the alveoli in mammals?

© 2019 Association of Biology Educators (ABE) @0772 503 660-Page 6 of 13

	D. N	Makes the alveoli cell thinner	
38. \$	A. n B. h C. h	nimals living in arid habitats excrete uric acid because it is on toxic ighly soluble in water ighly toxic assoluble in water	
	Which or refractory A. d B. u C. p	ne of the following is true about the state of the axon membrar y period? It is epolarized nexcitable olarized excitable with a stimulus stronger than usual	ne during the absolute
	issues? A. C B. S C. C	ne of the following is the major form in which carbon dioxide treatment of the following is the major form in which carbon dioxide treatment acid sodium bicarbonate Carboxyhaemoglobin Sicarbonate ions	avel to the lungs from
11 /	a) Nam	SECTION B :(60 MARKS)	(02 marks)
41. ((i)	e the salts and pigments found in bile Salts	(02 marks)
	(ii) 	Pigments	
	(b)	Explain why bile salts are not regarded to be enzymes	(03 marks)

C. Maintains a steep diffusion gradient

(c)	Desc (i)	ribe the role in mammalian digestion of the following Bile salts	(05 marks)
	(ii)	Enterokinase	
 2. (a) Ho	w does the	e ionic balance within a resting nerve cell differ from that outs	ide a nerve cell'
10	3		(04 marks)
(b) Ex	The ionic	movements in a neuron during the passage of an impulse	
 ii)	The ionic	movements in a neuron during recovery after an impulse	

III) Sallali	ory conduction in a myelinated	axon	(02 marks)
(a) List three	differences in the methods use	ed by humans and fish to obtain o	oxygen (03 mark
		200	
	gure 1 shows the changes in pre entilation cycle	essure in the buccal cavity and in t	he opercula cavi
		pressure inbuccal cavity	
	'ر +100 'در د	Thursday Cavity	
	bressure/Pa	0.3 - 0.6 time/s	
	<u>s</u> -100-		
		pressure in opercular cavity	
103	Fig.1	James 1:	0/
i) Use th	ie graph to calculate the rate of	f ventilation in cycles per minute	(02 marks)
	nost of the ventilation cycle wance from the graph that support	rater will be flowing in one dire	ction. Explain t (02 marks)
	ice nom me araon mai suddon		

Explain how efficient uptake	of oxygen by gills is achieved in a fish such as Tilapia (03 marl
	BIOLOX
Figure 2 shows changes in dry m	nass, sugar and lipids content in Castor seeds during germina
total dr suga lipid	ry mass
30 suga	ar D
0 2 4 6 8 10 1	
time from sowing/days Fig.2	on the array and limid context in the first cover days (02 ma
a) Explain the relationship between	een the sugar and lipid content in the first seven days (03 ma
	a) of the seedling was measured at day 5 and the embryo was the state of the state
Suggest a possible reason for	out 1.0 while the RQ of the storage centers was about 0.4 to for this difference (03 marks)

	c) If the testa of the seed is not removed, its RQ is about 4.0, but it's around 1.5 if the testa i removed. Account for these observations (04 marks)
	2 BIO/ 6
4.	
ŀЭ.	Two pairs of genes are known to determine certain basic coat colours in dogs. BB or Bb results in black coat when allele E is also present in the genotype.
	BB or Bb result in red coat when alleles ee are present in the genotype. bb results in brown coat when allele E is present in the genotype.
	bb results in yellow coat when alleles ee are present in the genotype.
	Alleles B and E are both necessary for black coat colour in the genotype. Due to the interactions of these two pairs of genes, the colours to be expected in a litter of puppie will depend not on the colour of the parents' coats but on their genotypes.
	a) Show by means of a cross how black parents can produce only black puppies (07 marks)
	*
	ADE

b) State the genot	ypes of black parents that wo	uld result into yellow pup	pies among the offspring (03 marks)
Genotypes of			(oo manto)
(i)	Parents:		
		10	
(ii)	Offspring:		
103/			/0/
Experimental work	k on the blood sucking bug R	hodinus has shown the f	ollowing results

Treatment I:

If the head is cut off 2 days after the blood meal, the bug survives for a short time but does not moult.

Treatment II:

If the head is cut off 7 days after the blood meal, moulting takes place

Treatment III:

If the brain from a moulted larva of Rhodinus is transplanted on to another larva of the same age, the larva moults but does not develop into a pupa

Taking into account the details given above. What deductions can be made about the control of moulting stating clearly the role of the determining factors involved.

(ii) After 7 days (03 marks) b) Basing on the result in treatment III indicate the role of the brain during moulting (03 marks)	
	••••
b) Basing on the result in treatment III indicate the role of the brain during moulting (03 mark	
b) Basing on the result in treatment III indicate the role of the brain during moulting (03 mark	
b) Basing on the result in treatment III indicate the role of the brain during moulting (03 mark	
b) Basing on the result in treatment III indicate the role of the brain during moulting (03 mark	
b) Basing on the result in treatment III indicate the role of the brain during moulting (03 mark	
b) Basing on the result in treatment III indicate the role of the brain during moulting (03 mark	
	(s)
c) Suggest how it may be possible to produce an adult from a larva. (01 mark)	

THE END